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Abstract

The 

 

Alphavirus

 

 genus within the 

 

Togaviridae

 

 family
contains several important mosquito-borne arboviruses.
Other than the antiviral activity of RNAi, relatively little
is known about alphavirus interactions with insect cell
defences. Here we show that Semliki Forest virus
(SFV) infection of 

 

Aedes albopictus-

 

derived U4.4
mosquito cells reduces cellular gene expression.
Activation prior to SFV infection of pathways involving
STAT/IMD, but not Toll signaling reduced subsequent
virus gene expression and RNA levels. These pathways
are therefore not only able to mediate protective
responses against bacteria but also arboviruses.
However, SFV infection of mosquito cells did not result
in activation of any of these pathways and suppressed
their subsequent activation by other stimuli.

Keywords: Semliki Forest virus, mosquito cells, host
response, cell signaling, virus/host interactions.

Introduction

 

The 

 

Alphavirus

 

 genus within the 

 

Togaviridae

 

 family contains
several important mosquito-borne arboviruses including
Chikungunya (Charrel

 

 et al

 

., 2007) and the equine
encephalitis viruses (Weaver & Barrett, 2004). Replication
of the prototype Sindbis and Semliki Forest viruses is well
understood (Strauss & Strauss, 1994; Kaariainen & Ahola,
2002). The genome consists of a positive-stranded RNA
with a 5

 

′

 

 cap and 3

 

′

 

 polyA tail. The 5

 

′

 

 two-thirds encodes the
nonstructural polyprotein P1234, which is translated from
the viral genome after virus entry and cleaved into four
replicase proteins nsP1–4 (Merits

 

 et al

 

., 2001; Kim

 

 et al

 

.,
2004; Lulla

 

 et al

 

., 2006). The structural polyprotein is
encoded in the 3

 

′

 

 third of the genome, and is cleaved into
capsid and glycoproteins after translation from a subgenomic
mRNA. Cytoplasmic replication complexes are associated
with cellular membranes (Salonen

 

 et al

 

., 2005).
Viruses and other intracellular pathogens have to

overcome cellular host defences to replicate efficiently. In
vertebrates, detection of viral signatures, for example
dsRNA, is an important trigger of antiviral defences (Haller

 

et al

 

., 2006; Randall & Goodbourn, 2008).
Little is known about how invertebrate cells react to

arbovirus infections. Establishment of persistent infections
in invertebrate cells, as opposed to cell death in vertebrate
cells, suggests fundamental differences (Brown, 1984;
Higgs, 2004). dsRNA is detectable in alphavirus-infected
mosquito cells (Stollar

 

 et al

 

., 1972). Unlike in shrimp
(Robalino

 

 et al

 

., 2007) and 

 

Lepidoptera

 

 (Hirai

 

 et al

 

., 2004),
there is however no indication that control dsRNAs used in
RNAi experiments stimulate antiviral responses in mosquitoes
(Keene

 

 et al

 

., 2004; Franz

 

 et al

 

., 2006), or transfected
mosquito cells (Caplen

 

 et al

 

., 2002). To date, RNAi is the
best-studied cellular mechanism known to prevent or limit
arbovirus replication in mosquitoes and mosquito cells
(Keene

 

 et al

 

., 2004; Campbell

 

 et al

 

., 2008).
Other invertebrate innate host defences have been most

extensively studied in 

 

Drosophila melanogaster

 

; pathogen
recognition receptors and signaling pathways have been
described (Silverman & Maniatis, 2001; Ferrandon

 

 et al

 

.,
2004; Royet, 2004). Fungi and Gram-positive bacteria
activate a Toll-dependent pathway, Gram-negative bacteria
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the IMD and JNK (branching off IMD) pathways, resulting in
production of antibacterial molecules such as defensins
(Silverman

 

 et al

 

., 2003). Mechanisms of insect innate
immune signaling (Eggleston

 

 et al

 

., 2000; Shin

 

 et al

 

., 2003;
Christophides

 

 et al

 

., 2004; Osta

 

 et al

 

., 2004; Bian

 

 et al

 

.,
2005; Shin

 

 et al

 

., 2005; Meredith

 

 et al

 

., 2006; Shin

 

 et al

 

.,
2006; Waterhouse

 

 et al

 

., 2007; Warr

 

 et al

 

., 2008) as well as
RNAi (Sanchez-Vargas

 

 et al

 

., 2004) seem to be conserved
in 

 

Anopheles

 

 and 

 

Aedes

 

 mosquitoes, though there are
differences at the molecular level between 

 

Anopheles

 

 and

 

Drosophila

 

, possibly due to different immune challenges
(Christophides

 

 et al

 

., 2002; Aguilar

 

 et al

 

., 2005).
Experiments with pathogenic 

 

Drosophila

 

 viruses have
shown that the 

 

Drosophila

 

 Toll (Zambon

 

 et al

 

., 2005) and
STAT (Dostert

 

 et al

 

., 2005) pathways are involved in
responses to infection. In mosquito cells, STAT proteins
(Christophides

 

 et al

 

., 2002; Lin

 

 et al

 

., 2004) are also activ-
ated after bacterial challenge (Barillas-Mury

 

 et al

 

., 1999).
Recently, a heat shock protein was shown to downregulate

O’nyong-nyong alphavirus replication in 

 

Anopheles gambiae

 

cells (Sim

 

 et al

 

., 2007), while the Toll pathway controls
Dengue virus infection (Xi

 

 et al

 

., 2008). Genomic studies
have used gene arrays to analyse the transcriptome of
mosquito and thrips larvae (Medeiros

 

 et al

 

., 2004; Sanders

 

et al

 

., 2005; Sim

 

 et al

 

., 2005). In mosquito midguts infected
with Sindbis virus (Sanders

 

 et al

 

., 2005), early Toll and
(possibly) IMD pathway component upregulation, late
JNK activation and RNAi (

 

dicer-2

 

) downregulation were
observed. Thrips larvae infected with the plant-infecting
tomato spotted wilt bunyavirus show upregulation of Toll,
IMD and JNK pathways (Medeiros

 

 et al

 

., 2004). These
effects might not directly be related to virus infection, as
complex secondary responses such as cytokines or other
‘danger’ signals may also be relevant in tissues.

As the interplay between mosquito cell signaling pathways
and alphaviruses is not understood, we investigated the
effect of SFV infection on mosquito host defence signaling
in 

 

Aedes albopictus

 

-derived U4.4 cells during the acute
phase of infection. SFV did not activate but effectively
inhibited STAT-, IMD- and Toll-mediated host defence signaling
in mosquito cells and reduced host gene expression. This
is similar to SFV infection of vertebrate cells, but the
reduction in gene expression was less and the infection did
not result in cell death. Stimulation of pathways involving
STAT and IMD (but not Toll) responses before infection reduced
viral gene expression and RNA synthesis, indicating that
these pathways can activate antiviral activities.

 

Results

 

SFV4 readily establishes infection of U4.4 mosquito cells

 

Early studies on SFV in mosquito cells showed that, like
other arboviruses, SFV (strain unknown) infection of

cultured 

 

Ae. albopictus

 

 cells begins with an acute phase of
efficient virus production between 12–24 h, and then enters
a persistent phase during which only few cells (1–2%)
produce virus (Davey & Dalgarno, 1974). Persistently
infected mosquito cell cultures can be maintained for many
passages. For Sindbis virus, the

 

 Ae. albopictus

 

-derived
U4.4 cell line closely resembles infectivity in the mosquito
and has been used to study virus/host interactions (Riedel
& Brown, 1979; Condreay & Brown, 1986; Condreay &
Brown, 1988; Miller & Brown, 1992). To study innate
defence mechanisms in SFV-infected U4.4 cells, we first
determined whether SFV4 (derived from the SFV prototype
cDNA clone) could establish infection of these cells.
Indirect immunofluorescence was used to verify SFV4
infection. At a multiplicity of infection (m.o.i.) of 10, approx.
100% of cells were infected at 18 h post-infection (p.i.)
(Fig. 1A). Infection was productive; high levels of virus
production were observed between 0 and 12, and 12 and
24 h p.i. (Fig. 1B). Thereafter, virus production dropped to
low levels as the culture entered the persistent phase of
infection. This pattern of infection was similar to that
described in the earlier experiments of Davey & Dalgarno
(1974) and to that described for Sindbis virus-infected U4.4
cells (Mudiganti

 

 et al

 

., 2006). Cell numbers of infected and
uninfected cultures increased at similar rate throughout the
observation period of 96 h p.i. (Fig. 1C). Thus, SFV4 displays
the expected characteristics of an arbovirus in these
mosquito cells.

 

SFV4 infection down-regulates host gene expression 
in U4.4 cells

 

Interference with host gene expression is one mechanism
by which alphaviruses interfere with host responses in
vertebrate cells (Aguilar

 

 et al

 

., 2007; Breakwell

 

 et al

 

., 2007;
Garmashova

 

 et al

 

., 2007). A previous report (measuring

 

3

 

H-uridine incorporation into cellular RNA) showed that
host RNA synthesis is inhibited 1.5- to 1.7-fold in Sindbis
virus-infected 

 

Ae. albopictus 

 

cells (Sarver & Stollar, 1977),
and led us to investigate if there is also inhibition of host
gene expression in SFV-infected mosquito cells.

Reporter genes expressed from constitutively active
promoters have been shown to reflect host gene expres-
sion in arbovirus-infected vertebrate and mosquito cells
(Kohl

 

 et al

 

., 2004; Leonard

 

 et al

 

., 2006). To analyse host
gene expression, U4.4 cells were transfected with a RNA
polymerase II-dependent reporter plasmid, pGL4.75
(

 

Renilla

 

 luciferase expression under the control of a CMV
promoter), infected with SFV4 (m.o.i. 10) immediately
post-transfection and 

 

Renilla

 

 expression measured during
the acute phase of virus production. For comparison,

 

Renilla

 

 expression was also measured in infected and
uninfected mouse NIH 3T3 cells. As shown in Fig. 2A,
SFV4 infection caused a moderate but consistent and
significant reduction in 

 

Renilla

 

 activity in U4.4 cells (2-fold
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at 24 h p.i.), but a strong reduction in NIH 3T3 cells (7-fold
at 12 h then 50-fold at 24 h p.i.) (Fig. 2B). As U4.4 and NIH
3T3 cells are infected at the same m.o.i. and all cells were
infected, those differences are not due to cell numbers.
Interestingly, reporter gene expression was reduced by the
same magnitude at 48 h p.i., suggesting that biologically
active virus proteins are still present as the culture becomes
persistently infected.

 

SFV4 infection of U4.4 mosquito cells does not activate the 
STAT, IMD or Toll signaling pathways and activation of these 
pathways is strongly reduced in virus-infected cells

 

In arthropods, the STAT, IMD and Toll signaling pathways
are known to be activated by bacteria and fungi. It is not
known whether these pathways are activated by arboviruses.
Dual luciferase reporter assays were used to determine the
ability of SFV4 to activate these pathways. U4.4 cells were
co-transfected with constitutively active internal reporter
plasmid pAct-

 

Renilla

 

 (expressing 

 

Renilla

 

 luciferase) and
one of three plasmids encoding Firefly luciferase under
the control of an inducible, pathway-responsive promoter.
The Firefly luciferase-expression plasmids p6x2DRAF-Luc,
pJL169 and pJM648 containing respectively promoters for
STAT-, IMD- or Toll- inducible signaling pathways were
used. Each of these dual luciferase reporter assays used a
different Firefly plasmid generating different background
levels of luciferase expression and different ratios of Firefly
to 

 

Renilla

 

 luciferase expression (Fig. 3). For cells trans-
fected with the STAT or IMD signaling pathway reporters,

addition of heat-inactivated 

 

Escherichia coli

 

 activated
both pathways (relative to PBS controls). In contrast, SFV4
infection did not activate either pathway and, consistent
with the previously observed reduction in host gene
expression (Fig. 2), background levels of both reporter
genes were reduced. Addition of heat-inactivated bacteria
to the virus-infected cells activated both the STAT and IMD
pathways, demonstrating that these virus infected cells
were still capable of responding to other pathogenic stimuli
(Fig. 3); the magnitude of this response was however far
less than that of uninfected cells. To activate the Toll pathway,
which cannot be activated by 

 

E. coli

 

 or 

 

Staphylococcus
aureus

 

 in U4.4 mosquito cell culture (our observations), an
expression plasmid (pJL195) for a constitutively active Toll
receptor (Toll 

 

Δ

 

LRR) (Tauszig

 

 et al

 

., 2000) was co-
transfected with the luciferase reporter plasmids. This
strongly activated the Toll pathway, > 15-fold (Fig. 3),
whereas empty insect cell expression vector (pIB-V5/His)
did not. Again, SFV4 infection did not activate this pathway
but reduced the background level of reporter genes.
SFV4 infection of Toll 

 

Δ

 

LRR-expressing cells dramatically
reduced activation of the Toll signaling pathway. Internal

 

Renilla

 

 controls were consistently expressed at slightly
higher levels when the Toll pathway was activated; the
reason for this is not known. Taken together, these results
show that SFV4 infection of U4.4 cells does not activate the
STAT, IMD or Toll pathways and that infection strongly reduces
the level of signaling induced by these pathways; this is pos-
sibly due to down-regulation of host cell gene expression.

Figure 1. (A) Infection of U4.4 mosquito cells with 
SFV4. At 18 h post-infection (p.i.) cells were fixed and 
stained using an anti-nsP3 antibody. Replication 
complexes (bright focal staining) are indicated by 
arrows. NIC: non-infected control. (B) Growth of SFV4 
on U4.4 cells. Cells were infected at a m.o.i. of 10 and 
virus production measured during time periods p.i., as 
indicated. Medium was replaced with fresh culture 
medium at the end of each period to measure virus 
production at specific time intervals. (C) Characteristics 
of mosquito cells infected with SFV4 (m.o.i. 10). Infected 
and uninfected U4.4 cell numbers were counted at 
regular intervals up to 96 h. �: uninfected cells; 
�: infected cells.
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Activation of host defence signaling pathways prior to virus 
infection suppresses viral gene expression

 

That SFV4 infection of U4.4 cells does not activate the
STAT, IMD or Toll signalling pathways could result from lack
of triggering or effective suppression. Whether responses
initiated by these signaling pathways are able to affect
arbovirus infection is not known. To allow quantitative
assessment of early and late virus gene expression,
recombinant viruses expressing 

 

Renilla

 

 luciferase from
either the replicase or the structural open-reading frame of
SFV4 were constructed (Kiiver

 

 et al

 

., 2008). 

 

Renilla

 

 luciferase
expressed from the genomic promoter was flanked by
nsP2-protease cleavage sites at the C-terminus of nsP3 in
SFV4(3H)-

 

Rluc

 

; 

 

Renilla

 

 luciferase expressed from the
subgenomic promoter was inserted between the capsid
and the envelope glycoproteins and released from the latter
by inclusion of a self-processing foot and mouth disease

Figure 2. Effect of SFV4 infection on mosquito cell gene expression during 
the acute phase of virus production. Shut-off of host gene expression was 
measured using a Renilla luciferase reporter gene under control of a 
constitutively active RNA polymerase II-promoter (pGL4.75) in mosquito 
(U4.4) (A) and mammalian (NIH 3T3) cells (B); luciferase activities were 
determined at 0, 12 and 24 h p.i. Each bar represents the mean of three 
independent biological replicates; error bars indicate the standard deviation. 
Every experiment was repeated at least twice under the same conditions.

Figure 3. Stimulation and effect of SFV4 infection on mosquito cell defence 
signaling. U4.4 cells were co-transfected with pAct-Renilla (Renilla 
expressed under control of the RNA polymerase II-dependent Drosophila 
actin 5C promoter) as internal control and plasmids containing the STAT 
(p6x2DRAF-Luc)- or IMD (pJL169)- or Toll (pJM648)-responsive promoters 
directing Firefly luciferase expression, then immediately infected with SFV4 
(m.o.i. 10) or mock-infected. Where indicated, host response pathways were 
then stimulated by adding heat-inactivated E. coli (STAT, IMD stimulation; 
mock: PBS) immediately post-transfection, or immediately post-infection. 
The Toll pathway was stimulated by transfection (simultaneously with 
reporter genes for Toll pathway activation) of constitutively active receptor 
Toll ΔLRR in pJL195 (‘Toll’) or empty insect cell expression vector pIB-V5/His 
(‘control’), followed immediately by infection with SFV4 (m.o.i. 10) or 
mock-infection. Cells were lysed and luciferase activities determined at 18 h 
p.i. Each bar represents the mean of three independent biological replicates; 
error bars indicate the standard deviation. Every experiment was repeated 
at least twice under the same conditions.
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virus 2A peptide (SFV4-StRluc) (de Felipe et al., 2006)
(Fig. 4A).

To test the effects of immune signaling involving STAT
and IMD on SFV gene expression, U4.4 cells were
pre-incubated for 1 h with heat-inactivated E. coli or with
PBS, then infected with SFV4(3H)-Rluc or SFV4-StRluc. As
shown in Fig. 4B, bacterial activation of host defences prior
to infection reduced virus gene expression both from the
genomic and the sub-genomic promoters by around 50%.
Immunostaining of parallel cultures demonstrated that the
percentage of virus-infected cells in both the bacterial-treated
and PBS control-treated cells were identical (data not
shown), indicating that prior stimulation with bacteria did
not affect virus entry. Expression of constitutively active Toll
receptor (Toll ΔLRR) for 24 h, followed by infection with
Renilla-expressing SFVs had no effect on virus gene
expression at 12 h p.i. (Fig. 4C). Activation of Toll signaling

before IMD/STAT signaling did not reverse the inhibitory
effects of bacterial stimulation on viral gene expression
(not shown).

Stimulation of host defences involving STAT/IMD reduces 
virus RNA replication rates

To determine whether viral RNA replication was affected by
prior simulation with heat-inactivated bacteria (activating
pathways involving STAT/IMD signaling), viral genome
copies (which also serve as mRNA) were measured by real
time quantitative PCR. As previously, U4.4 cells were
stimulated with heat-inactivated E. coli for 1 h, followed by
infection with SFV4 for 12 h, and total RNA was isolated. As
shown in Fig. 5, bacterial stimulation reduced viral genome
copy number by 40–60% (compared to non-stimulated
cells), similar to the reduction in viral gene expression,
demonstrating that bacterial activation of cellular defences

Figure 4. Effects of host cell defence signaling on SFV gene expression. (A) Recombinant SFV4-derived viruses expressing Renilla luciferase (Rluc) from 
the non-structural (SFV4(3H)-Rluc) or structural region of the genome (SFV4-stRluc). (B) U4.4 cells were stimulated with heat-inactivated Escherichia coli 
for 1 h or mock-treated, then infected (m.o.i. 1) with recombinant SFVs. Luciferase expression was measured at 12 h p.i. (C) U4.4 cells were transfected with 
constitutively active Toll ΔLRR receptor (pJL195) or mock-stimulated (transfection of pIB-V5/His; empty insect cell expression vector) for 24 h then infected with 
(m.o.i. 1) SFV4(3H)-Rluc or SFV4-stRluc. Cells were lysed 12 h p.i. and luciferase activities determined. Each bar represents the mean of three independent 
biological replicates; error bars indicate the standard deviation. Every experiment was repeated at least twice under the same conditions.
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interferes with virus RNA replication. The magnitude of this
effect is similar to the effect of type I interferon on SFV RNA
synthesis in vertebrate cells (Mecs et al., 1967).

Discussion

Relatively little is known about arbovirus interactions with
mosquito host defences. In vertebrate cells, alphavirus
infections result in a reduction of host cell gene transcrip-
tion which includes at least some host defence responses
(Garmashova et al., 2006; Aguilar et al., 2007; Breakwell
et al., 2007; Garmashova et al., 2007). Sindbis virus
infection of an Aedes albopictus cell line different to that
used in the present study reduced host RNA levels 1.5
to 1.7-fold (Sarver & Stollar, 1977). This suggests that
transcriptional inhibition can also take place in alphavirus-
infected mosquito cells. Our results show that alphavirus
inhibition of mosquito cell gene expression occurs in
SFV4-infected U4.4 cells, and is similar in magnitude to the
previous observation.

Direct comparison of cellular gene expression in U4.4
and NIH 3T3 cells infected with SFV4 demonstrated that
reduction of cellular gene expression was far greater in
mouse (50-fold at 24 h p.i.) than mosquito cells (2-fold).
Our studies extend previous work by demonstrating that
SFV4-infected mosquito cells make only limited responses
to stimulation of the STAT and IMD pathways with

heat-inactivated bacteria, and Toll pathway-induced gene
expression is also strongly reduced by SFV4 infection.

In U4.4 cells, there was no activation of the STAT, IMD or
Toll pathways by SFV4 infection. Possibly this is because
virus infection does not trigger these pathways. Alternatively,
virus might trigger these pathways but no gene expression
results due to down-regulation of host cell gene expression
in virus-infected cells. Given that this down-regulation of
gene expression was in the order of 2-fold, far less than that
observed in vertebrate cells, and there was no indication
of any upregulation of STAT, IMD and Toll pathways in
virus-infected cells, it seems most likely that SFV infection
does not trigger these pathways. However, we cannot rule
out the possibility that SFV4 directly targets and inhibits
these host defence pathways. Viruses can directly target
cell defence pathways, many examples of this exist in virus/
vertebrate cell interactions (Randall & Goodbourn, 2008);
in mosquito cells, STAT phosphorylation is inhibited in
Japanese encephalitis arbovirus (Flaviviridae) infection
(similar to mammalian cells) (Lin et al., 2004). Venezuelan
encephalitis alphavirus capsid protein does not target
nuclear import in mosquito cells, while it does in vertebrate
cells to interfere with host gene expression; however the
experiments described would not allow to detect subtle
changes in gene expression, mode of action by capsid
might differ, and/or different viral proteins might be involved
(Atasheva et al., 2008). Interestingly though, if host
defence pathways, including STAT and IMD but not Toll,
were stimulated prior to SFV4 infection, reporter gene
expression from both the virus replicase and structural
open-reading frames was reduced (50%). Virus RNA levels
were also reduced (40–60%) in these cells providing an
explanation, though the possibility that reduction in virus
RNA levels was compounded by reductions in translation
of these virus RNAs cannot be ruled out. In summary,
although SFV4 infection probably does not trigger the
STAT, IMD or Toll pathways, activation of host defence
pathways which include STAT and IMD, but not the Toll
pathway alone, does inhibit virus replication. It is possible
that STAT and/or IMD pathways are the main mediators of
antiviral effects against SFV4 in mosquito cells, though
other pathways responsive to Gram-negative bacteria
might also be involved. Other antiviral pathways might exist
in mosquitoes, and this possibility needs to be further
investigated. The pathogenic Microplitis demolitor bracovirus
can not just inhibit Toll and IMD signaling, but also inhibits
antimicrobial melanization reactions (Thoetkiattikul et al.,
2005; Beck & Strand, 2007; Lu et al., 2008). Despite the
evolutionary distance between Aedes and Drosophila, our
results show that tools to study Drosophila microbe/cell
interactions can also be successfully used in Aedes; this
suggests some conservation of important physiological
processes and might allow mosquito researchers to take
further advantage of related invertebrate organisms.

Figure 5. Activation of host cell defence signaling inhibits SFV4 RNA 
replication. U4.4 cells were treated with heat-inactivated Escherichia coli for 
1 h (to stimulate signaling pathways involving STAT/IMD) or mock-treated, 
then infected with SFV4 (m.o.i. 1) for 12 h before RNA isolation. Viral 
genome copy numbers, which also act as viral polyprotein mRNA and are 
thus linked to viral gene expression, were measured by real time quantitative 
PCR targeting a region of nsP3. RNAs from three independent biological 
replicates (for both non-stimulated and stimulated cells) were reverse 
transcribed in triplicate; each reverse transcription reaction was then 
amplified in triplicate. Each bar represents the average of all measurements 
from a representative real time quantitative PCR experiment (see 
Experiemental procedures); error bars represent the standard deviation. 
Every experiment was repeated at least twice under the same conditions.
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It remains to be seen how this study compares to
genomic studies suggesting (sometimes delayed) upregu-
lation of host defence pathways in response to arbovirus
infection in entire insects or specific target tissues (Medeiros
et al., 2004; Sanders et al., 2005). IMD pathway activation
in Sindbis virus-infected Aedes aegypti midguts is intriguing
and might indeed have antiviral potential during natural
infection (Sanders et al., 2005); however it remains to be
seen what exactly activates this pathway. Direct analysis of
infected cells, as in this study, suggests that host defence
signaling is actively downregulated, but if activated prior to
infection then virus gene expression and replication are
reduced. Activation of these pathways in tissues might be
a secondary reaction to dsRNA, cytokines, or other ‘danger
signals’, as suggested for Drosophila X virus (Zambon
et al., 2005). Tissue damage should not be excluded as
alphaviruses can induce pathological changes in mosquitoes
(Mims et al., 1966; Weaver et al., 1988; Scott & Lorenz, 1998;
Bowers et al., 2003).

It is not yet clear how virus gene expression and replica-
tion can be affected by mosquito innate immunity, and how
important these pathways are compared to the relatively
slow RNAi responses. Mammalian defensins have antiviral
activity at various levels (Klotman & Chang, 2006) and antiviral
activities of mosquito antimicrobial peptides is possible.

In summary, host defence signaling, including the STAT,
IMD and Toll pathways, is strongly reduced in SFV4-infected
U4.4 cells, probably as a result of a general inhibition of
host cell gene expression. These pathways are not activated
in SFV4-infected cells, possibly because of this prior inhibi-
tion of host cell gene expression or alternatively because
they are not triggered by this infection. Activation of
pathways involving STAT/IMD but not Toll signaling prior
to infection does nevertheless exert an anti-viral effect.

Experimental procedures

Cells and viruses

The Ae. albopictus-derived U4.4 cell line (Condreay & Brown,
1986) was grown at 28 °C in L-15/10% fetal calf serum (FCS)/8%
tryptose phosphate broth (TPB). Strain SFV4 and recombinant
viruses were grown in BHK-21 cells (37 °C; in GMEM/2% newborn
calf serum (NBCS). NIH 3T3 mouse cells were grown at 37 °C in
DMEM/10%NBCS/5 mM L-glutamine.

Virus-containing supernatants were clarified by centrifugation
(3 ×, 30 min, 15 000 rpm) and viruses concentrated from supernatant
on a 20% (w/v) sucrose/TNE buffer (pH 7.4) cushion by ultracen-
trifugation (25 000 rpm, 90 min, SW28 rotor). Pellets were
resuspended in TNE buffer, and viruses titrated by plaque assay.
Infection of mosquito and mammalian cells was performed at
28 °C or 37 °C for 1 h, respectively, at a m.o.i. of 10 plaque forming
units (PFU) per cell (unless otherwise stated) in PBS/0.75% BSA.
After infection complete medium was added to the cells. To
establish growth curves, approx. 6.5 × 105 U4.4 cells/well (in 6-well
plates) were infected at a m.o.i. of 10; medium to be titrated was

taken off and replaced with fresh medium for intervals indicated.
For growth comparisons of infected and noninfected cells, approx.
1.3 × 105 U4.4 cells/well (in 24-well plates) were infected at a m.o.i.
of 10 and counted at times indicated.

Immunostaining

U4.4 cells were fixed with 4% paraformaldehyde. After 2 washes
(always in PBS), cells were permeabilised with 0.3% Triton-X100
in PBS for 20 min and washed 2x. After blocking with CAS block
(Invitrogen, Paisley, UK) (20 min), primary anti-nsP3 antibody (in
CAS block; anti-nsP3 1:800) was added, followed by 3 washes.
Incubation with secondary antibody (goat-anti-rabbit biotinylated
IgG in CAS block; 1:750) was followed by 3 washes, and streptavidin-
conjugated Alexa Fluor 594 was added. After 2 washes, slides
were mounted with mounting medium (Vector Laboratories, Peter-
borough, UK) and images acquired (Zeiss AxioSkop confocal
microscope; Carl Zeiss Ltd., Welwyn Garden City, UK).

Plasmids

Plasmid pGL4.75 (Promega, Southhampton, UK) contains the
Renilla luciferase gene under control of the CMV IE promoter.
Insect cell expression plasmid pIB-V5/His was obtained from
Invitrogen. pAct-Renilla (Karsten et al., 2006) contains the Renilla
luciferase gene under control of the Drosophila actin 5C promoter
for constitutive expression. p6x2DRAF-Luc (Hombria et al., 2005)
is a multimerised Drosophila STAT-responsive element with a
Firefly luciferase reporter. IMD-pathway reporter pJL169 (Firefly
luciferase under control of the Drosophila Attacin A promoter),
Toll-pathway pathway reporter pJM648 (Firefly luciferase under
control of the Drosophila Drosomycin promoter) and plasmid
expressing constitutively active Toll receptor (pJL195; Toll ΔLRR)
have been previously described (Tauszig et al., 2000).

Transfection of DNA, Toll pathway activation and 

luciferase assays

U4.4 (650 000 cells/well, or as indicated) or NIH 3T3 (106 cells/
well) cells in 6-well plates were transfected using 1 μl Lipofectamine
2000 (Invitrogen) per well. Before transfection, medium in wells was
replaced by fresh complete medium. Nucleic Acid/Lipofectamine
2000 complexes were prepared in OPTIMEM (Invitrogen). Amounts
of DNA used: 10 ng pGL4.75 or combinations of pAct-Renilla (25
ng) with p6x2DRAF or pJL169 (100 ng). For Toll pathway activation
pAct-Renilla (25 ng), pJM648 (1 μg) and pJL195 (or pIB-V5/His
as negative control; 800 ng) were co-transfected (using 3 μl
Lipofectamine 2000 per well) for 3 h, then fresh medium was
added. Cells were lysed in Passive Lysis Buffer. Luciferase activities
were measured using a Dual Luciferase assay kit (Promega) on a
GloMax 20/20 Luminometer.

Pathway stimulation with Escherichia coli

To prepare working stocks of E. coli strain JM109 (New England
Biolabs, Hitchim, UK), 1 μl of bacterial stock solution was added to
5 ml LB medium (without antibiotics), incubated at 37 °C/18 h, and
centrifuged (4 °C, 2500 rpm/10 min). Cells were resuspended in
0.5 ml PBS, and bacteria inactivated by heating the suspension at
80 °C for 10 min. Fresh stocks were prepared for each experiment
(concentration approx. 9 × 105 bacteria/μl). For transfection/
stimulation experiments, 5 μl of the suspension (approx.
4.5 × 106 cells) were added into 2 ml complete medium/well, post
transfection (and, where indicated, infection). Assuming that
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volume of Aedes hemolymph is approx. 50 nl (Shapiro et al.,
1986), the concentration of approx. 2250 inactivated bacteria per
μl culture medium is below lethal concentrations in live Drosophila
(Pham et al., 2007). To measure effects on viral gene expression,
U4.4 cells (650 000 cells/well in 6-well plates) were stimulated (1 h)
with heat-inactivated bacteria or mock stimulated as described
above, followed by infection with recombinant SFV for 1 h. Reporter
gene expression was analysed by luciferase assays at 12 h p.i.

Real time quantitative PCR (qPCR)

Quantification of viral genome copy numbers was carried out
essentially as described (Breakwell et al., 2007). Briefly, cultures
of U4.4 cells (650 000 cells/well) were stimulated with heat-
inactivated E. coli or mock-stimulated (3 independent biological
replicates each) for 1 h as described above, followed by infection
with SFV4 (m.o.i. 1) for 12 h. Following RNA extraction, quantity
and quality were assessed on a nanodrop spectrophotometer
(Fisher Scientific, Loughborough, UK). 0.5 μg of total RNA from
each replicate were reverse-transcribed (again in triplicate), and
each of those reactions was analysed in triplicate by qPCR. The
reaction mix contained the following: 0.8 μM of each primer,
40 mM deoxynucleoside triphosphates, 3 mM MgCl2, 1:10 000
SYBR Green (Biogene Ltd., Kimbolton, UK), 0.75 U Fast Start Taq
(Roche Applied Science, Burgess Hill, UK), and 2 μl of template.
Tubes were heated to 94 °C for 5 min, and the PCR was then
cycled through 94 °C for 20 s, 62 °C for 20 s, and 72 °C for 20 s for
40 cycles on a RotorGene 3000 instrument (Corbett Research,
St. Neots, UK). Sequences of the primers were as follows: SFV-
nsP3-for 5′-GCAAGAGGCAAACGAACAGA-3′, SFV-nsP3-rev 5′-
GGGAAAAGATGAGCAAACCA-3′.
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